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Letter to the Editor

Unsupervised free-living overnight home use of closed-loop 
insulin delivery is feasible, safe, and effective in adolescents1 and 
adults2 with type 1 diabetes, but outcomes vary between indi-
viduals. Understanding factors influencing glucose outcomes 
may help to identify vulnerable populations, guide design of 
future studies, and lead to enhanced control algorithms.

To explore associations between demographic characteris-
tics, the use of closed-loop and glucose performance, we pooled 
data from 2 multicenter trials, 1 involving adolescents,1 and 1 
involving adults2 with type 1 diabetes. Both studies adopted an 
open-label, cross-over, randomized controlled study design. 
Participants were randomly assigned to 4 (adults) or 3 (adoles-
cents) weeks of sensor-augmented pump therapy with or with-
out overnight closed-loop. An identical model-predictive-control 
algorithm was used in both studies.3 Participants were instructed 
to start the system at home after their evening meal and to dis-
continue it before breakfast the next morning. Detailed methods 
and results are reported elsewhere.1-2

In the present work, Pearson’s correlation coefficients 
quantified the relationship between baseline demographic 
factors (age, BMI, HbA1c, total daily dose), participant-level 
utility characteristics (average duration of closed-loop appli-
cation, average start time of closed-loop) and closed-loop 
outcomes between midnight and 08:00 (mean glucose, time 
in target between 70 and 145 mg/dl, time below 70 mg/dl) 
(Table 1). Age and time below target were rank-normal trans-
formed. Associations with gender were evaluated applying 
Spearman correlation. Multiple linear regression analysis 
quantified the amount of explained variability of closed-loop 
outcomes using demographic and utility characteristics.

Forty participants completed the studies, including 24 
adults (age 43 ± 12 years [mean ± SD]; HbA1C 64.9 ± 
8.9mmol/mol, 8.1 ± 0.8%; BMI 26.0 ± 3.5kg/m2; total daily 

insulin dose 0.5 ± 0.1U/kg/day) and 16 adolescents (age 15.6 
± 2.1 years; HbA1C 63.9 ± 9.4mmol/mol, 8.0 ± 0.9%; BMI 
22.4 ± 3.7kg/m2; total daily insulin dose 0.8 ± 0.2U/kg/day).

Data on 866 closed-loop nights were analyzed. HbA1c at 
baseline was associated with mean glucose during closed-loop 
nights (r = .52, P = .001) and time with hypoglycemia (r = –.43, 
P = .006), but not time in target (r = –.26, P = .101). Early 
closed-loop start and longer closed-loop application tended to 
increase time in target (P = .064). There was an age-associated 
reduction in time in target (r = –.33, P = .038), perhaps reflect-
ing the association between older age and shorter period of 
closed-loop use (r = –.58, P < .001). Of the variance in mean 
glucose, 33% was explained by the regression model (P = .028), 
with HbA1c as the only significant predictor (P = .001). For 
time below target, the explained variance was 36% (P = .017); 
earlier closed-loop start time (P = .017) and HbA1c (P = .008) 
were significant predictors. Only 20% of variance in time in tar-
get was explained by the regression model.

The strength of the current work is that the data were col-
lected during free-living unsupervised home closed-loop 
use. Weaknesses include that we did not capture at all or with 
low confidence other potentially influential factors such as 
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socioeconomic and educational status, exercise patterns, and 
meal size and composition.

In conclusion, in adolescents and adults with type 1 diabe-
tes undergoing overnight closed-loop, baseline HbA1c is 
correlated with mean overnight glucose but not time in target 
range. Despite closed-loop, a lower HbA1c level remains a 
risk factor for nocturnal hypoglycemia. Improved time in tar-
get may be observed if overnight closed-loop is started ear-
lier and applied for longer.
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Table 1. Pearson’s Correlation Coefficients Between Closed-Loop Outcomes and Demographic and Utility Characteristics (N = 40).

Age BMI HbA1c Total daily dose
Duration of closed-

loop application
Time of closed-

loop start

Mean glucose (P value) .17 (.294) .10 (.550) .52 (.001) –.25 (.119) –.20 (.209) .25 (.117)
Time in target 70-145 mg/dl (P value) –.33 (.038) –.24 (.129) –.26 (.101) .27 (.097) .30 (.064) –.30 (.064)
Time below 70 mg/dl (P value) .04 (.786) .14 (.386) –.43 (.006) .06 (.702) –.12 (.473) –.25 (.127)


