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OBJECTIVE

We aimed to assess the feasibility and safety of hybrid closed-loop insulin delivery
in children with type 1 diabetes aged 1–7 years as well as evaluate the role of
diluted insulin on glucose control.

RESEARCH DESIGN AND METHODS

In an open-label, multicenter, multinational, randomized crossover study, 24 chil-
dren with type 1 diabetes on insulin pump therapy (median age 5 years [inter-
quartile range 3–6] andmean6 SD HbA1c 7.46 0.7% [576 8mmol/mol] and total
insulin 13.2 6 4.8 units/day) underwent two 21-day periods of unrestricted living
and we compared hybrid closed-loop with diluted insulin (U20) and hybrid closed-
loop with standard strength insulin (U100) in random order. During both inter-
ventions, the Cambridge model predictive control algorithm was used.

RESULTS

The proportion of time that sensor glucose was in the target range between 3.9 and
10 mmol/L (primary end point) was not different between interventions (mean6 SD
726 8% vs. 706 7% for closed-loopwith diluted insulin vs. closed-loopwith standard
insulin, respectively; P = 0.16). There was no difference in mean glucose levels (8.06
0.8 vs. 8.260.6mmol/L;P =0.14), glucose variability (SDof sensor glucose 3.160.5
vs. 3.2 6 0.4 mmol/L; P = 0.16), or the proportion of time spent with sensor
glucose<3.9mmol/L (4.561.7%vs.4.761.4%;P=0.47)or<2.8mmol/L (0.660.5%
vs. 0.6 6 0.4%; P > 0.99). Total daily insulin delivery did not differ (17.3 6 5.6 vs.
18.9 6 6.9 units/day; P = 0.07). No closed-loop–related severe hypoglycemia or
ketoacidosis occurred.

CONCLUSIONS

Unrestricted home use of day-and-night closed-loop in very young children with
type 1 diabetes is feasible and safe. The use of diluted insulin during closed-loop
does not provide additional benefits compared with standard strength insulin.

Despite advances in the management of type 1 diabetes and supporting technologies,
the majority of children with type 1 diabetes are unable to achieve recommended
treatment targets (1,2). Closed-loop systems (3) delivering insulin in glucose-responsive
fashion may provide benefits compared with existing treatment modalities including
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improved glycemic control and reduced
burden of hypoglycemia (4,5). Hybrid
closed-loop systems are characterized
by automated insulin delivery apart
from when user manages insulin boluses
at mealtime.
Rapid progress has been made in

testing closed-loop delivery systems dur-
ing unrestricted living in randomized clin-
ical trials across a broad range of people
with type 1 diabetes (6–10). However,
investigations in preschool children have
been confined to short study durations,
round-the-clock supervision, and inpa-
tient or diabetes camp settings (11–13).
Performance of closed-loop systems in
young children, including preschool chil-
dren, in unsupervised home settings is
unknown.
In preschool children, insulin infusion

rates ,0.1 units/h may be required
compared with higher rates of 1.0
units/h and above in adolescents and
young adults. Modern insulin pumps
allow adjustments of basal rates but
are limited by minimum increments of
0.01–0.05 units/h (14), inherent inaccur-
acies at low infusion rates (15), and
temporal silent occlusions (16). Diluting
insulin is applied in pediatric diabetes
centers to mitigate against these factors,
but compelling evidence to support the
use of diluted insulin is missing. Anec-
dotal reports suggest that the use of
diluted insulin in young children may
be beneficial to decrease glycemic var-
iability, reduce occurrence of unex-
plained hyperglycemia, and reduce
infusion set failures (17). Diluting insulin
as a strategy for delivering low basal
infusion rates is in line with the latest
clinical practice consensus guidelines
provided by the International Society
of Pediatric and Adolescent Diabetes
in 2018 (18). Results from an overnight
research facility closed-loop study sug-
gested that the use of diluted insulin in
very young children may lead to reduced
hypoglycemia and reduced glucose var-
iability as well as less variable insulin
absorption (11,19).
The objective of the present multi-

center randomized trial was to assess
the feasibility and safety of closed-loop
insulin delivery in home settings in chil-
drenwith type 1 diabetes aged 1–7 years.
We hypothesized that the use of diluted
insulin in a population with low insulin
requirements will improve glucose con-
trol and reduce the risk of hypoglycemia.

In a crossover randomized study design,
closed-loop was applied over two 21-day
periods comparing hybrid closed-loop
with diluted insulin (U20) and hybrid
closed-loop with standard strength in-
sulin (U100).

RESEARCH DESIGN AND METHODS

Study Participants
Inclusion criteria included type 1 diabe-
tes as defined by the World Health
Organization for at least 6 months,
age between 1 and 7 years (inclusive),
insulin pump therapy for at least 3
months, and glycated hemoglobin #11%
(#97mmol/mol). Key exclusion criteria
included total daily insulin dose $2.0
units/kg/day and more than two inci-
dents of severe hypoglycemia within
6 months prior to enrollment.

We identified eligible children from
pediatric diabetes clinics at Adden-
brooke’s Hospital (Cambridge, U.K.),
Medical University of Vienna, Leeds
Children’s Hospital, Centre Hospitalier
de Luxembourg, University of Leipzig,
Medical University of Innsbruck, and
Medical University of Graz.

Study Design and Procedures
The study adopted an open-label, mul-
ticenter, multinational, randomized, two-
period crossover design contrasting
hybrid closed-loop glucose control using
diluted insulin (U20) and hybrid closed-
loop using standard insulin strength
(U100) during unrestricted living. Two in-
tervention periods lasted 3 weeks, with
each separated by 1–4 weeks of washout.
The order of the two interventions was
random. Training on study insulin pump
and continuous glucose monitoring took
place over a 2- to 4-week run-in period.

At enrollment, capillary blood samples
were taken for analysis of glycated he-
moglobin. At the start of the run-in
phase, participants and their parents/
guardians received training regarding
the use of the study pump (a modified
640G insulin pump, for investigational
use only;Medtronic, Northridge, CA) and
the study real-time continuous glucose
monitoring (Enlite 3 Glucose Sensor;
Medtronic). Participants and their pa-
rents/guardians used the study pump’s
standard bolus calculator for all meals
throughout the study.

At the end of the run-in period, com-
pliance in the use of study pump and
continuous glucose monitoring was

assessed. Participants with at least 8
days’ worth of continuous glucose mon-
itoring data during the last 14 days
of the run-in period were randomly
assigned to receive either 3 weeks of
hybrid closed-loop insulin delivery with
standard insulin aspart (U100; Novo Nor-
disk, Bagsvaerd, Denmark) followed by
hybrid closed-loop insulin delivery with
diluted insulin aspart (U20; NovoNordisk)
or vice versa. Permuted block randomi-
zation was applied, and assignment was
unblinded owing to the nature of the
design. During the washout period, par-
ticipants could continue using the study
insulin pump and real-time continuous
glucose monitoring system.

On the 1st day of the first closed-loop
period, participants and their parents/
guardians attended the clinical research
facility. This 1- to 2-h visit included
training on initiation and discontinuation
of the closed-loop system, switching
between closed-loop and usual pump
therapy, the meal bolus procedure,
and the use of study devices during periods
of increased physical activity. Competency
in using the closed-loop system by the
parents/guardians was assessed. Following
discharge, participants continued the
study intervention for the next 21 days
in free-living settings in their home and
nursery/kindergarten or school environ-
ment. Participants were not remotely mon-
itoredor supervised. Theparticipantswere
free to consumemeals of their choice, and
no restrictions were imposed on traveling
or physical activity. We encouraged pa-
rents/guardians to continue closed-loop
use during periods of increased physical
activity and organized sports and to an-
nounce these periods to the algorithm.

At the start of the closed-loop period
with use of diluted insulin, closed-loop
training covered the use of diluted in-
sulin. Prior to start of closed-loop with
diluted insulin, pump settings were adap-
ted accordingly and reviewed by two
members of the research team. Carers
at nursery/kindergarten or school also
receive closed-loop training by the study
team as required.

Parents/guardians were advised to
calibrate the continuous glucose moni-
toring device according to the manufac-
turer’s instructions; they were free to
decide on alarm settings for the contin-
uous glucose monitoring device. All pa-
rents/guardians were provided with a
24-h telephone helpline to contact the
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local study team in the event of study-
related issues.

Insulin Dilution
Dilutionof insulinaspart toU20(20units/
mL) was performed by qualified mem-
bers of study teams using Insulin Diluting
Medium for NovoRapid (insulin aspart)
and Levemir (insulin detemir) (NovoNor-
disk). A 1:5 dilution ratio was used across
all study participants.

Closed-Loop System
The FlorenceM closed-loop system (Sup-
plementary Fig. 1) used a model predic-
tive control algorithm (version 0.3.46;
University of Cambridge, Cambridge,
U.K.) residing on a smartphone (Galaxy
S4; Samsung, Seoul, South Korea). Every
10 min, the control algorithm calculated
an insulin infusion rate that was set on the
study pump. The control algorithm was
initialized using preprogrammed basal
insulin delivery downloaded from the
study pump. Information about partici-
pant’s weight and total daily insulin dose
was entered at setup. The treat-to-target
control algorithm aimed to achieve glu-
cose levels between 5.8 and 7.3 mmol/L
depending on the accuracy of model-
based glucose predictions.
The threshold suspend feature on the

modified 640G pump was turned on
during closed-loop operation and al-
lowed insulin delivery to be suspended
when thesmartphonewasnot in rangeor
not operational. Further safety mitiga-
tions during closed-loop can be found
in Supplementary Data.

Study Oversight
Prior to study initialization, approval was
received from independent research
ethics committees in the U.K., Luxem-
bourg, Germany, and Austria and regu-
latory authorities in the U.K. (Medicines
and Healthcare Products Regulatory
Agency), Luxembourg (Ministry of
Health), Germany (Federal Institute for
Drugs and Medical Devices), and Austria
(Austrian Agency for Health and Food
Safety).
Parents/guardians of participants signed

informed consent before study-related
activities were initiated. Whenever pos-
sible and in line with recommendations
by local ethics committees, assent of
study participants was obtained in ad-
dition to the consent of the parents/
guardians or legal representatives.

Assays
Glycated hemoglobin at recruitment for
characterization of the study population
was measured locally using an Interna-
tional Federation of Clinical Chemistry
and Laboratory Medicine (IFCC)-aligned
method and following NGSP standards.

Study End Points
The primary end point was the propor-
tion of time when glucose was in the
target range between 3.9 and 10.0
mmol/L during the 21-day study periods
as recorded by continuous glucose mon-
itoring. Secondary end points included
mean sensor glucose concentrations;
glucose variability measured by the SD
and the coefficient of variation; time
spent at glucose levels ,3.9, ,3.5,
,2.8, .10.0, and .16.7 mmol/L; and
insulin delivery (total, basal, and bolus
amounts). Hypoglycemia burden was
additionally assessed by calculating the
glucose sensor area under the curve
,3.5 mmol/L. Secondary end points
were calculated over the whole study

periods, and a subset of secondary end
points (time in the target range, time
,3.5mmol/L,meanglucose,SDofglucose,
and total insulin amount), to limit the
number of comparisons, during daytime
and nighttime periods; daytime was clas-
sified as between 6:00 A.M. and 9:59 P.M. and
nighttime between 10:00 P.M. and 5:59 A.M.

Sample Size
Based on our overnight closed-loop study
in young children (11) and an estimate of
an 10-percentage-point improvement in
time in target with diluted insulin using
an SD of 13 percentage points for the
paired difference between study pe-
riods, 20 subjects were required to
achieve the desired 90% power and
an a-level of 0.05 (two-tailed t test);
24 participants were planned to be
randomized to allow for dropouts.

Statistical Analysis
The statistical analysis plan was agreed
upon by investigators in advance. All
analyses were carried out on an intention-

Table 1—Characteristics of the study participants at screening

Overall Diluted first
Standard strength

first

n 24 12 12

Age (years)
Median (IQR) 5 (3–6) 5 (3–6) 5 (3–6)
Range 1–7 1–7 2–7

Male sex, n (%) 15 (63) 6 (50) 9 (75)

Race/ethnicity, n (%)
White 21 (88) 11 (92) 10 (83)
Asian 1 (4) 1 (8) 0 (0)
Mixed 2 (8) 0 (0) 2 (17)

Diabetes duration (years)
Mean 6 SD 3.1 6 1.7 3.0 6 1.6 3.3 6 1.9
Range 0.5–6.4 0.5–5.5 0.5–6.4

Total daily insulin, mean 6 SD
Units/day 13.2 6 4.8 13.2 6 4.6 13.2 6 5.2
Units/kg/day 0.65 6 0.14 0.67 6 0.15 0.62 6 0.14

Total basal insulin, mean 6 SD
Units/day 4.9 6 2.3 4.7 6 2.2 5.1 6 2.5
Units/kg/day 0.24 6 0.08 0.24 6 0.07 0.25 6 0.09

Total bolus insulin, mean 6 SD
Units/day 8.2 6 3.4 8.4 6 3.4 8.1 6 3.5
Units/kg/day 0.41 6 0.13 0.43 6 0.15 0.38 6 0.11

Basal-to-bolus ratio, mean 6 SD 0.66 6 0.28 0.62 6 0.24 0.70 6 0.32

BMI* percentile, median (IQR)† 73 (4–91) 61 (49–75) 83 (31–91)

HbA1c, mean 6 SD
% 7.4 6 0.7 7.7 6 0.7 7.1 6 0.6
Millimoles per mole of

nonglycated hemoglobin 57 6 8 61 6 8 54 6 6

*BMI calculated as theweight in kilograms divided by the square of height inmeters. †BMI z score
adjusted for age and sex based on 2000 Centers for Disease Control and Prevention growth charts;
excludes one subject ,2 years of age who received diluted insulin first. For this subject, BMI
percentile could not be calculated.
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to-treat basis. We analyzed end points
from participants with at least 24 h
of sensor glucose data in one study
period. Analysis of those with at least
24 h of glucose sensor data in both study
periods was also carried out (prespecified
analysis plan). The respective values ob-
tained during the 21-day randomized
interventions were compared using a
linear mixed model adjusting for period
as a fixed effect and site as a random
effect. Rank normal transformation anal-
yses were used for highly skewed end
points. End points were presented as
mean 6 SD for normally distributed
values or as median (interquartile range
[IQR]) for nonnormally distributed val-
ues. Outcomes were calculated using
gstat software, version 2.2.4 (University
of Cambridge), and statistical analyses
carried out using SAS software, version
9.4 (SAS Institute). A 5% significance level
was used to declare statistical signifi-
cance. All P values are two sided.

RESULTS

From August 2017 to February 2018,
24 subjects were enrolled and random-
ized (15males ofmedian age 5 years [IQR
3–6] and mean 6 SD diabetes duration
3.1 6 1.7 years, glycated hemoglobin
7.46 0.7% [576 8mmol/mol], and total
daily insulin 13.26 4.8 units/day) (Table
1). The flow of participants through the
trial is shown in Supplementary Fig. 2.

Of 24 randomized participants, 23
completed the trial.Oneparticipantwith-
drew from the study during washout as a
result of recurrent technical issues with
the closed-loop system (i.e., sensor cali-
bration and device communication issues).

Primary and secondary end points
calculated using data from all random-
ized subjects are presented in Table 2.
The primary end point, the proportion
of time sensor glucose was in the tar-
get glucose range between 3.9 and
10.0 mmol/L, was not different between
interventions (72 6 8% vs. 70 6 7% for
closed-loop with diluted insulin vs. closed-
loop with standard insulin, respectively;
P = 0.16), with a mean adjusted differ-
ence of 2 percentage points in favor of
diluted insulin (95% CI 21 to 4). Fig. 1
shows 24-h sensor glucose profiles. End
points calculated using data from ran-
domized subjects with a minimum of
24 h of sensor data in both treatment
periods (n = 23 for both periods) were
similar (Supplementary Table 1).

There was no difference in mean glu-
cose levels (8.060.8vs. 8.260.6mmol/L
for closed-loop with diluted insulin vs.
closed-loop with standard insulin, re-
spectively; P = 0.14) or glucose variability
(Table 2) between study interventions.
The proportion of time when sensor
glucose was ,3.9 mmol/L did not differ
(4.56 1.7% vs. 4.76 1.4%; P = 0.47). The
percentages of time spent with sensor

readings,3.5mmol/L and,2.8mmol/L
were low and not different between
interventions (Table 2). The relative bur-
den of hypoglycemia as measured by the
area under the curve when sensor glu-
cose was,3.5 mmol/L was not different
(P = 0.71).

Total daily insulin delivery did not
differ between interventions (17.3 6
5.6 vs. 18.9 6 6.9 units/day for
closed-loop with diluted insulin vs.
closed-loop with standard insulin; P =
0.07). There was no difference in basal
insulin delivery (P = 0.76). However, a
modest but statistically significant reduction
of bolus insulin delivery during closed-loop
withdiluted insulinwasobserved (10.463.5
vs. 11.8 6 4.2 units/day; P = 0.006), pre-
sumably due to slightly lower glucose
levels during closed-loop with diluted
insulin resulting in a reduced amount
of insulin delivered as correction boluses.
Basal–to–bolus insulin ratios were not
different between interventions (P = 0.10).

Glucose sensor use and closed-loop
application were high. During closed-
loop with diluted insulin, closed-loop
was used for a median of 86% (IQR
84–91) of the time, and participants
wore glucose sensor for 94% (91–95)
of the time. During closed-loop with
standard strength insulin, these values
were 88% (82–91) and 95% (92–97),
respectively.

Secondary end points calculated for
daytime and nighttime are shown in
Table 3. Tight glucose control was par-
ticularly prominent during the nighttime
(Fig. 1 and Table 3). There was no evi-
dence that the effect of treatment de-
pended on time of day (Table 3).

Adverse Events
No severe hypoglycemia or diabetic ke-
toacidosis events were reported during
the entire study. One participant was
hospitalized during washout owing to a
lower respiratory tract infection. Six
other adverse events were reported,
of which three occurred during run-in,
one during washout, and two during
closed-loop with standard strength insulin
(Supplementary Table 1). None of the
events were deemed related to study
devicesorstudyprocedures.Allparticipants
recovered fully without clinical sequelae.

CONCLUSIONS

To our knowledge, this is the first and
longest randomized controlled trial

Table 2—Comparison of glucose control and insulin delivery over 21 days during
closed-loop with diluted insulin (U20) and closed-loop with standard strength
insulin (U100)

Diluted Standard strength
(n = 23) (n = 24) P

Percent of time with sensor glucose level in range
3.9–10.0 mmol/L* 72 6 8 70 6 7 0.16
,3.9 mmol/L 4.5 6 1.7 4.7 6 1.4 0.47
,3.5 mmol/L 2.4 6 1.2 2.5 6 1.0 0.32
,2.8 mmol/L 0.6 6 0.5 0.6 6 0.4 .0.99
.10.0 mmol/L 23 6 9 25 6 7 0.23
.16.7 mmol/L 1.2 (0.6–3.2) 1.5 (0.8–3.1) 0.28

Glucose AUC ,3.5 mmol/L† 2.9 6 1.9 3.0 6 1.6 0.71

Glucose (mmol/L) 8.0 6 0.8 8.2 6 0.6 0.14

Glucose SD (mmol/L) 3.1 6 0.5 3.2 6 0.4 0.16

Glucose CV (%) 40 (39–41) 39 (38–42) 0.91

Total daily insulin (units/day) 17.3 6 5.6 18.9 6 6.9 0.07

Total daily basal insulin (units/day) 6.8 6 2.5 7.2 6 3.2 0.76

Total daily bolus insulin (units/day) 10.4 6 3.5 11.8 6 4.2 0.006

Basal-to-bolus ratio 0.67 6 0.19 0.63 6 0.20 0.10

Data are mean 6 SD or median (IQR) unless otherwise indicated. CV, coefficient of variation.
*Primary end point. †The area under the curve (AUC) is for a glucose level ,3.5 mmol/L/24-h
period.
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investigating day-and-night application
of closed-loop insulin delivery in very young
children with type 1 diabetes during
unrestricted living. Our findings docu-
ment that hybrid closed-loop insulin
delivery in a relatively well-controlled
population is feasible and safe in man-
aging glucose control. No benefits asso-
ciated with the use of diluted insulin were
observed.
Results of the current study are con-

sistent with observations in older children
(6), adolescents (6,7), adults (6,9), and
pregnant women (20) about safety and
efficacy of closed-loop therapy using
Cambridge model predictive control.
This confirms the robustness of ourmodel
predictive algorithm and supports the ap-
plication of our closed-loop systems across
a broad range of people with type 1 dia-
betes including preschool children.
Studies of outpatient closed-loop use

in toddlers and preschoolers with type 1

diabetes are sparse. Hybrid insulin de-
livery using a modular model predictive
control approach in children aged 5–9
years was investigated in diabetes camp
settings under close supervision docu-
menting reduced nocturnal hypoglyce-
mia compared with sensor-augmented
insulin pump therapy (12). This was off-
set by increased mean glucose levels
during closed-loop use. DeBoer et al.
(13) evaluated 68-h use of a hybrid
closed-loop system in 12 children aged
5–8 years followed as an outpatient
admission compared with home care.
Closed-loop resulted in increased time
with glucose levels in the target range
and lower mean glucose levels without
increasing the risk of hypoglycemia.
These two trials were short, participants
were supervised, and toddlers and pre-
schoolers were excluded.

The rationale for the use of diluted
insulin in the current study was to

enhance accuracy of insulin delivery.
Our assumption was that these benefits
may manifest markedly in those with
lower total daily dose, but we observed
no relationship between the total daily
insulin amount and thedifference in time
when glucose was in the target range
when we compared diluted insulin with
standard strength insulin closed-loop use
(Supplementary Fig. 3). We enrolled par-
ticipants with total daily insulin dose
ranging from 4.3 to 26.6 units, but
only two participants had a total insulin
dose,10.0 units/day during closed-loop
interventions (Supplementary Fig. 3).

Overnight glucose control is a major
concern for parents and caregivers of
young children with type 1 diabetes.
More than 50% of severe hypoglycemic
episodes occur during sleep in children
and adolescents (21). Fear of hypoglyce-
mia is amajor cause of stress and anxiety
for families and caregivers (22) and is
also a major barrier to therapy intensi-
fication (21) and optimal glucose control
(23). With .80% of time with sensor
readings in the target range overnight,
mean overnight glucose levels close to
7.0 mmol/L, and very low rates of hy-
poglycemia, our closed-loop system per-
formed particularly well overnight (Fig. 1
and Table 3). A trend similar to that in the
current study was observed in our pre-
vious trials in older populations (6,9,24).
Because of this favorable nocturnal per-
formance, hybrid closed-loop systems
may be particularly appealing to families
and caregivers of young children with
type 1 diabetes.

We used a prototype modular closed-
loop system with the size of devices as
well as connectivity issues potentially
limiting its utility. Nevertheless, sensor
glucose wear was high, at a median 94–
95% of the time, and, similarly, closed-

Figure 1—Sensor glucose levels. Shown are the median sensor glucose levels and IQRs during
closed-loop with diluted insulin (n = 23 [solid red line and red shaded area]) and closed-loop with
standard strength insulin (n =24 [dashedblack line and gray shadedarea]). Dashedhorizontal lines
indicate the target glucose range between 3.9 and 10 mmol/L. m, minute.

Table 3—Daytime and nighttime glucose control and insulin delivery during closed-loop with diluted insulin (U20) and
closed-loop with standard strength insulin (U100)

Daytime: 6:00 A.M. to 9:59 P.M. Nighttime: 10:00 P.M. to 5:59 A.M.

Diluted Standard strength Diluted Standard strength
(n = 23) (n = 24) (n = 23) (n = 24) P*

Percent of time with sensor glucose level in range
3.9–10.0 mmol/L 68 6 10 67 6 8 80 6 10 77 6 9 0.41
,3.5 mmol/L 2.9 6 1.7 3.0 6 1.3 1.3 6 1.2 1.7 6 1.1 0.66

Glucose (mmol/L) 8.2 6 0.9 8.3 6 0.8 7.6 6 0.8 7.9 6 0.6 0.09

Glucose SD (mmol/L) 3.3 6 0.5 3.4 6 0.5 2.6 6 0.6 2.8 6 0.5 0.17

Total insulin (units/day) 14.8 6 4.9 16.2 6 5.7 2.3 6 0.9 2.4 6 1.1 0.06

Data are mean 6 SD. *P value for treatment–by–time of day interaction.
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loopusewas high, at amedian86–88%of
the time, demonstratinghighcompliance
and potential interest among parents/
guardians of young children and feasi-
bility of closed-loop use in nurseries,
kindergartens, and playgroups.
The strengths of our study include the

multicenter, multinational, crossover,
randomized design that had the benefit
of each participant acting as his/her own
control. The study was performed with-
out remote monitoring or close super-
vision, thereby assessing real-world use
and supporting generalizability of study
findings. We did not restrict partici-
pants’ dietary intake, physical activity,
or geographicalmovements. Limitations
include a relatively short duration of
follow-up; a relatively small number of
participants, particularly participants
with total daily dose ,10 units/day;
nonstandardized sensor alarm settings;
and a lack of a control group to assess
efficacy comparedwith standard clinical
practice. We aim to address some of
these issues in a follow-up study.
In conclusion, hybrid closed-loop in-

sulin delivery using the model predictive
control approach is feasible and safe in
young children with type 1 diabetes
duringunrestricted living. Insulindilution
does not appear to be of additional
benefit with use of hybrid closed-loop
insulin delivery.
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